A magic square is said to be most-perfect, if it contains the consecutive numbers 1, 2, …, n2 such that
T=n2 + 1
The following magic square with order 4 and 8 are most-perfect.
1 | 15 | 10 | 8 |
12 | 6 | 3 | 13 |
7 | 9 | 16 | 2 |
14 | 4 | 5 | 11 |
1 | 16 | 17 | 32 | 53 | 60 | 37 | 44 |
63 | 50 | 47 | 34 | 11 | 6 | 27 | 22 |
3 | 14 | 19 | 30 | 55 | 58 | 39 | 42 |
61 | 52 | 45 | 36 | 9 | 8 | 25 | 24 |
12 | 5 | 28 | 21 | 64 | 49 | 48 | 33 |
54 | 59 | 38 | 43 | 2 | 15 | 18 | 31 |
10 | 7 | 26 | 23 | 62 | 51 | 46 | 35 |
56 | 57 | 40 | 41 | 4 | 13 | 20 | 29 |