A magic square of order m · n is called composite, when it can be decomposed into m2 magic subsquares, each of order n.
It is to be noted that the minimal composite magic square must be of order n=9. This is the minimal number with two divisors, for which magic squares exist.
This means that the fundamental magic square can be decomposed into m2=32=9 magic subsquares, each of them with order n=. Of course it is impossible that all subsquares are normalized, i.e. are composed of consecutive integers 1, 2, … , n2.
71 | 66 | 67 | 20 | 25 | 24 | 29 | 34 | 33 |
64 | 68 | 72 | 27 | 23 | 19 | 36 | 32 | 28 |
69 | 70 | 65 | 22 | 21 | 26 | 31 | 30 | 35 |
8 | 3 | 4 | 40 | 39 | 44 | 74 | 79 | 78 |
1 | 5 | 9 | 45 | 41 | 37 | 81 | 77 | 73 |
6 | 7 | 2 | 38 | 43 | 42 | 76 | 75 | 80 |
47 | 54 | 49 | 56 | 63 | 58 | 11 | 16 | 15 |
52 | 50 | 48 | 61 | 59 | 57 | 18 | 14 | 10 |
51 | 46 | 53 | 60 | 55 | 62 | 13 | 12 | 17 |
The next composite magic square is found for order m · n=12. This order can be divided in the following manner:
This means that the composite square can be decomposed in m2=32=9 magic subsquares of order n=4.
17 | 31 | 30 | 20 | 132 | 142 | 143 | 129 | 61 | 56 | 60 | 49 |
28 | 22 | 23 | 25 | 137 | 135 | 134 | 140 | 51 | 58 | 54 | 63 |
24 | 26 | 27 | 21 | 133 | 139 | 138 | 136 | 50 | 59 | 55 | 62 |
29 | 19 | 18 | 32 | 144 | 130 | 131 | 141 | 64 | 53 | 57 | 52 |
100 | 105 | 101 | 112 | 68 | 73 | 69 | 80 | 36 | 41 | 37 | 48 |
110 | 103 | 107 | 98 | 78 | 71 | 75 | 66 | 46 | 39 | 43 | 34 |
111 | 102 | 106 | 99 | 79 | 70 | 74 | 67 | 47 | 38 | 42 | 35 |
97 | 108 | 104 | 109 | 65 | 76 | 72 | 77 | 33 | 44 | 40 | 45 |
84 | 89 | 85 | 96 | 4 | 14 | 15 | 1 | 116 | 121 | 117 | 128 |
94 | 87 | 91 | 82 | 9 | 7 | 6 | 12 | 126 | 119 | 123 | 114 |
95 | 86 | 90 | 83 | 5 | 11 | 10 | 8 | 127 | 118 | 122 | 115 |
81 | 92 | 88 | 93 | 16 | 2 | 3 | 13 | 113 | 124 | 120 | 125 |
But, also another decomposition is possible.
This composite magic square is decomposed into m2=42=16 magic subsquares, each of order n=3.
8 | 3 | 4 | 119 | 124 | 123 | 130 | 135 | 128 | 29 | 36 | 31 |
1 | 5 | 9 | 126 | 122 | 118 | 129 | 131 | 133 | 34 | 32 | 30 |
6 | 7 | 2 | 121 | 120 | 125 | 134 | 127 | 132 | 33 | 28 | 35 |
105 | 106 | 101 | 58 | 57 | 62 | 49 | 54 | 47 | 74 | 81 | 76 |
100 | 104 | 108 | 63 | 59 | 55 | 48 | 50 | 52 | 79 | 77 | 75 |
107 | 102 | 103 | 56 | 61 | 60 | 53 | 46 | 51 | 78 | 73 | 80 |
71 | 64 | 69 | 92 | 99 | 94 | 89 | 84 | 85 | 44 | 37 | 42 |
66 | 68 | 70 | 97 | 95 | 93 | 82 | 86 | 90 | 39 | 41 | 43 |
67 | 72 | 65 | 96 | 91 | 98 | 87 | 88 | 83 | 40 | 45 | 38 |
114 | 115 | 110 | 13 | 12 | 17 | 26 | 21 | 22 | 137 | 142 | 141 |
109 | 113 | 117 | 18 | 14 | 10 | 19 | 23 | 27 | 144 | 140 | 136 |
116 | 111 | 112 | 11 | 16 | 15 | 24 | 25 | 20 | 139 | 138 | 143 |