Bimagic: order 16

The first known 16th-order bimagic square was published by Gaston Tarry in 1903. And it is even a partial trimagic square: the 16 rows are trimagic.

15286103166191106241196166151256205171154
10287494107906413150167193244155170208253
55610081581110996199246148161202251157176
8497754931121059164145247198173160250203
249204174159248197163146960941118538398
1581752012521471622002451109557129982565
20725415616919424314916863141088950310188
17215325520616515224219592105156285104251
128774326113683823144189219234129180214231
274280125223965116235218192141230215177132
741232948711182033186139237224183134228209
453212275361711970221240138187212225135182
136181211226137188222239120693518121764631
227210184133238223185140193472117304773124
178131229216191142236217661152140791262841
213232130179220233143190372411467442512778

Nowadays, various methods are known to create bimagic squares of order 16.